Abstract

High-accuracy implementation of biological neural networks is a computationally expensive task, specially, for large-scale simulations of neuromorphic algorithms. This paper proposes a set of models for biological spiking neurons, which are efficiently implementable on digital platforms. Proposed models can reproduce different biological behaviors with a high precision. The proposed models are investigated, in terms of digital implementation feasibility and costs, targeting low-cost hardware implementation. Hardware synthesis and physical implementations on a field-programmable gate array show that the proposed models can produce biological behavior of different types of neurons with higher performance and considerably lower implementation costs compared with the original model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.