Abstract
Mechanical properties of traditional engineering materials are typically coupled to each other, presenting a challenge to practitioners with multi-dimensional material property requirements. In this work, continuous, independent control over multiple mechanical properties is demonstrated in composite materials realized using additive manufacturing. For the first time, composites additively manufactured from rigid plastic, soft elastomer, and liquid constituents are experimentally characterized, demonstrating materials which span four orders of magnitude in modulus and two orders of magnitude in toughness. By forming analytical mappings between relative concentrations of constituents at the microscale and resulting macroscale material properties, inverse material design is enabled; the method is showcased by printing artifacts with prescribed toughness and elasticity distributions. The properties of these composites are placed in the context of biological tissues, showing they have promise as mechanically plausible tissuemimics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.