Abstract

Digital microfluidics (DMF) has recently emerged as a popular technology for a wide range of applications. In DMF, nanoliter to microliter droplets containing samples and reagents can be manipulated to carry out a range of discrete fluidic operations simply by applying a series of electrical potentials to an array of patterned electrodes coated with a hydrophobic insulator. DMF is distinct from microchannel-based fluidics as it allows for precise control over multiple reagent phases (liquids and solids) in heterogeneous systems with no need for complex networks of connections, microvalves, or pumps. In this review, we discuss the most recent developments in this technology with particular attention to the potential benefits and outstanding challenges for applications in chemistry, biology, and medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.