Abstract

The Universal Soil Loss Equation (USLE) and its main derivate, the Revised Universal Soil Loss Equation (RUSLE), are widely used in estimating hillslope erosion. The effects of topography on hillslope erosion are estimated through the product of slope length (L) and slope steepness (S) subfactors, or LS factor, which often contains the highest detail and plays the most influential role in RUSLE. However, current LS maps in New South Wales (NSW) are either incomplete (e.g. point-based) or too coarse (e.g. 250 m), limiting RUSLE-based applications. The aim of this study was to develop automated procedures in a geographic information system (GIS) to estimate and map the LS factor across NSW. The method was based on RUSLE specifications and it incorporated a variable cutoff slope angle, which improves the detection of the beginning and end of each slope length. An overland-flow length algorithm for L subfactor calculation was applied through iterative slope-length cumulation and maximum downhill slope angle. Automated GIS scripts have been developed for LS factor calculation so that the only required input data are digital elevation models (DEMs). Hydrologically corrected DEMs were used for LS factor calculation on a catchment basis, then merged to form a seamless LS-factor digital map for NSW with a spatial resolution ~30 m (or 1 s). The modelled LS values were compared with the reference LS values, and the coefficient of efficiency reached 0.97. The high-resolution digital LS map produced is now being used along with other RUSLE factors in hillslope erosion modelling and land-use planning at local and regional scales across NSW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call