Abstract

Dense hydroxyapatite (HA) bars were fabricated using digital light processing. The roles of HA median particle size (MPS), curing depth-to-layer thickness ratio (CD/LT), and debinding process on the printing/debinding flaws and flexural strength of the sintered parts were investigated. Commercial HA was milled for different times to provide powders with an MPS ranging from 0.3 to 2.7 µm. Thermal debinding led to delamination and vertical cracks, which decreased with increasing MPS; the minimum value required to fabricate specimens with appreciable flexural strength was 0.9 µm. At a given MPS (2.7 µm), the CD/LT varied between 1.4 and 3.3, indicating a progressive disappearance of the above major flaws. Finally, the positive effect of water debinding prior to thermal debinding on reducing crack formation was demonstrated. After optimisation, the bars achieved a flexural strength greater than 100 MPa, which is the highest value among dense HA fabricated using lithography-based techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.