Abstract

Three-dimensional (3D) printing is becoming a revolutionary technique across various fields. Especially, digital light processing (DLP) 3D printing shows advantages of high resolution and high efficiency. However, multifunctional monomers are commonly used to meet the rapid liquid-to-solid transformation during DLP printing, and the extensive production of unreprocessable thermosets will lead to resource waste and environmental problems. Here, we report a family of dynamic polymers with highly tailorable mechanical properties for DLP printing. The dynamic polymers cross-linked by ionic bonding and hydrogen bonding endow printed objects with excellent self-healing and recycling ability. The mechanical properties of printed objects can be easily tailored from soft elastomers to rigid plastics to satisfy practical applications. Taking advantage of the dynamic cross-linking, various assembling categories, including 2D to 3D, small to large 3D structures, and same to different materials assembly, and functional devices with a self-healing capacity can be realized. This study not only helps to address environmental issues caused by traditional DLP-printed thermosets but also realizes the on-demand fabrication of complex structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.