Abstract

Achieving soft start-up and short-circuit protection have always been challenging for resonant converters due to severe stresses in the resonant tank. Optimal trajectory control (OTC) has been proven to be the most effective control method to optimize energy delivery with given stresses. This paper proposes a method to implement soft start-up and short-circuit protection for LLC converters by using low-cost microcontrollers (MCUs) with minimum stresses and optimal energy delivery. Our current understanding of the relationship between the switching frequency and the output voltage is based on the state-plane analysis, and the requirement for the controllers is significantly reduced when using the lookup table. Further improvement enables the application of the proposed control method to high-frequency LLC converters without increasing the cost for the controllers. This paper proposes a method to protect the LLC converter from abrupt short-circuit with low-cost MCUs, which improves transient response to short-circuit significantly, and investigates limitations when operating the high-frequency LLC converter under short-circuit conditions. The proposed methods minimize the CPU resource requirement and can be further integrated with other state-trajectory control functions within one MCU. Experimental results are demonstrated on a 500-kHz 1-kW 400-V/12-V LLC converter with 60-MHz MCU TMS320F28027.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.