Abstract

Improved plasticity models require simultaneous experimental local strain and microstructural evolution data. Microscopy tools, such as electron backscatter diffraction (EBSD), that can monitor transformation at the relevant length-scale, are often incompatible with digital image correlation (DIC) techniques required to determine local deformation. In this paper, the viability of forescatter detector (FSD) images as the basis for the DIC study is investigated. Standard FSD and an integrated EBSD/FSD approach (Pattern Region of Interest Analysis System: PRIAS™) are analyzed. Simultaneous strain and microstructure maps are obtained for tensile deformation of Q&P 1180 steel up to ~14% strain. Tests on an undeformed sample that is simply shifted indicate a standard deviation of error in strain of around 0.4% without additional complications from a deformed surface. The method resolves strain bands at ~2 μm spacing but does not provide significant sub-grain strain resolution. Similar resolution was obtained for mechanically polished and electropolished samples, despite electropolished surfaces presenting a smoother, simpler topography. While the resolution of the PRIAS approach depends upon the EBSD step size, the 80 nm step size used provides seemingly similar resolution as 8,000× (22.7 nm) FSD images. Surface feature evolution prevents DIC analysis across large strain steps (>6% strain), but restarting DIC, using an FSD reference image from an interim strain step, allows reasonable DIC across the stress–strain curve. Furthermore, the data are obtained easily and provide complementary information for EBSD analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.