Abstract

An off-axis digital holographic imaging polarimeter was developed to estimate the Jones matrices of an object. The Jones vector image of the electric field returned from the object is determined from a single holographic recording using the interference between the dual, nearly orthogonal, reference beams. The technique compensates for phase variations in the optical beam paths between the recorded holograms and relaxes the need to generate orthogonal illumination polarization states. A minimization algorithm was developed to compute an estimation of the Jones matrix image of an object based on a set of measured Jones vector images. A proof-of-concept demonstration was performed to compute an estimated Jones matrix image of a polarimetrically complex object using digital holograms recorded with 6 different illumination polarizations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call