Abstract

Despite all of the technical advancements in writing and text editing with keyboards on numerous devices, writing with a pen remains a fundamental ability in modern human existence. Handwriting disabilities are referred to as dysgraphia. Nonetheless, how well they are taught to write in school, 10-30% of children never attain a respectable level of handwriting. Early identification is critical because it can help children avoid difficulties in their behavioral and academic development. On blank papers attached to digital tablets, 280 individuals were asked to complete the concise evaluation scale for children’s handwriting (BHK), with 218 having typical handwriting and 62 having dysgraphia. In addition to their age and BHK quality and speed scores, 12 variables identifying digital handwriting across several domains (static, kinematic, pressure, and tilt) were collected. In this paper, we provided a rapid and automated dysgraphia classification approach using an artificial neural network (ANN) model. Using digital handwriting traits as an input to the ANN approach, the prediction findings were encouraging and very accurate, reaching 96% accuracy, and they could lead to the development of a new self-administered dysgraphia screening tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.