Abstract

Calorimeters that can fully exploit the power of Particle Flow Algorithms, which attempt to measure each particle in a hadronic jet individually, emphasize spatial granularity over single particle energy resolution. In this context, the CALICE collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and is read out with 1 x 1 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> pads and digital (1-bit) resolution. The Digital Hadron Calorimeter went through a broad beam test program over several years to yield a unique dataset of electromagnetic and hadronic interactions with unprecedented spatial resolution. In addition to conventional calorimetry, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various analytical tools to improve calorimetric performance. Here we report on the results from the analysis of DHCAL data and comparisons with the Monte Carlo simulations across various test campaigns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call