Abstract

Drones, also known as unmanned aerial vehicles (UAVs) and sometimes referred to as 'Mobile IoT' or 'Flying IoT', are widely adopted worldwide, with their market share continuously increasing. While drones are generally harnessed for a wide range of positive applications, recent instances of drones being employed as lethal weapons in conflicts between countries like Russia, Ukraine, Israel, Palestine, and Hamas have demonstrated the potential consequences of their misuse. Such misuse poses a significant threat to cybersecurity and human lives, thereby highlighting the need for research to swiftly and accurately analyze drone-related crimes, identify the responsible pilot, and establish when and what illegal actions were carried out. In contrast to existing research, involving limited data collection and analysis of the drone, our study focused on collecting and rigorously analyzing data without restrictions from the remote controller used to operate the drone. This comprehensive approach allowed us to unveil essential details, including the pilot's account information, the specific drone used, pairing timestamps, the pilot's operational location, the drone's flight path, and the content captured during flights. We developed methodologies and proposed artifacts to reveal these specifics, which were supported by real-world data. Significantly, this study is the pioneering digital forensic investigation of remote controller devices. We meticulously collected and analyzed all internal data, and we even employed reverse engineering to decrypt critical information files. These achievements hold substantial significance. The outcomes of this research are expected to serve as a digital forensic methodology for drone systems, thereby making valuable contributions to numerous investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call