Abstract
A. Rosenfeld [23] introduced the notion of a digitally continuous function between digital images, and showed that although digital images need not have fixed point properties analogous to those of the Euclidean spaces modeled by the images, there often are approximate fixed point properties of such images. In the current paper, we obtain additional results concerning fixed points and approximate fixed points of digitally continuous functions. Among these are several results concerning the relationship between universal functions and the approximate fixed point property (AFPP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.