Abstract

Statement of problemMarginal discrepancy is key to evaluating the accuracy of fixed dental prostheses. An improved method of evaluating marginal discrepancy is needed. PurposeThe purpose of this in vitro study was to evaluate the absolute marginal discrepancy of ceramic crowns fabricated using conventional and digital methods with a digital method for the quantitative evaluation of absolute marginal discrepancy. The novel method was based on 3-dimensional scanning, iterative closest point registration techniques, and reverse engineering theory. Material and methodsSix standard tooth preparations for the right maxillary central incisor, right maxillary second premolar, right maxillary second molar, left mandibular lateral incisor, left mandibular first premolar, and left mandibular first molar were selected. Ten conventional ceramic crowns and 10 CEREC crowns were fabricated for each tooth preparation. A dental cast scanner was used to obtain 3-dimensional data of the preparations and ceramic crowns, and the data were compared with the “virtual seating” iterative closest point technique. Reverse engineering software used edge sharpening and other functional modules to extract the margins of the preparations and crowns. Finally, quantitative evaluation of the absolute marginal discrepancy of the ceramic crowns was obtained from the 2-dimensional cross-sectional straight-line distance between points on the margin of the ceramic crowns and the standard preparations based on the circumferential function module along the long axis. ResultsThe absolute marginal discrepancy of the ceramic crowns fabricated using conventional methods was 115 ±15.2 μm, and 110 ±14.3 μm for those fabricated using the digital technique was. ANOVA showed no statistical difference between the 2 methods or among ceramic crowns for different teeth (P>.05). ConclusionsThe digital quantitative evaluation method for the absolute marginal discrepancy of ceramic crowns was established. The evaluations determined that the absolute marginal discrepancies were within a clinically acceptable range. This method is acceptable for the digital evaluation of the accuracy of complete crowns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call