Abstract
This paper describes a new methodology to quantify the variation in the output of a computational fluid dynamics model for block and ash flows, when the digital elevation model (DEM) of the terrain and other inputs are given as a range of possible values with a prescribed uncertainty. Integrating these variations in the possible flows as a function of input uncertainties provides well-defined hazard probabilities at specific locations, i.e. a hazard map. Earlier work provided a methodology for assessing hazards based on variations in flow initiation and friction parameters. This paper extends this approach to include the effect of terrain error and uncertainty. The results are based on potential flows at Mammoth Mountain, CA, and Galeras Volcano, Colombia. The analysis establishes the soundness of the approach and the effect of including the uncertainty in DEMs in the construction of probabilistic hazard maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.