Abstract

Recent advances in mosquito genomics and genetic engineering technologies have fostered a need for quick and efficient methods for detecting targeted DNA sequence variation on a large scale. Specifically, detecting insertions and deletions (indels) at gene-edited sites generated by CRISPR guide RNA (gRNA)/Cas9-mediated non-homologous end-joining (NHEJ) is important for assessing the fidelity of the mutagenesis and the frequency of unintended changes. We describe here a protocol for digital-droplet PCR (ddPCR) that is well-suited for high-throughput NHEJ analysis. While this method does not produce data that identifies individual sequence variation, it provides a quantitative estimate of the sequence variation within a population. Additionally, with appropriate resources, this protocol can be implemented in a field-site laboratory setting more easily than next-generation or Sanger sequencing. ddPCR also has a faster turn-around time for results than either of those methods, which allows a more quick and complete analysis of genetic variation in wild populations during field trials of genetically-engineered organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call