Abstract

A Digital Data Acquisition System (DDAS) composed of 16-channel FPGA-programmable modules running 12-bit 100 Mega-Samples Per Second (MSPS) ADCs has been implemented on three different experimental arrays at the National Superconducting Cyclotron Laboratory (NSCL) encompassing charged particle spectroscopy, high and low energy-resolution photon detection, and neutron time-of-flight measurements. DDAS has increased the experimental capabilities of each array by providing energy and time measurements with nearly zero dead-time, low energy thresholds, and large dynamic range. The performance of the DDAS Analog-to-Digital Converters (ADC)s was characterized, and energy and time resolutions were compared with traditional analog systems. We have demonstrated a 14- to 15-bit peak-sensing equivalent resolution when applied to semiconductor detectors and 500 ps time resolution for LaBr3 detectors measuring coincident radiation with signal amplitudes of ≈13% of the input range of the ADC. Details regarding the operation of the system at NSCL including digital filtering, triggering, clock distribution, and event-building are discussed along with applications to selected detector systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.