Abstract

Abstract A study was designed to confirm the formation properties obtained from available conventional RCA data and inferred from corrected wireline log data using digital rock analysis (digital RCA and SCAL analysis) on cores from the Greater Burgan field. This study was performed for Kuwait Oil Company, Fields Development Group (S&EK) by FEI Digital Rock Services in 2014. As part of this study, 27 feet of whole core, from the Lower Ahmadi (AHL2) to Upper Wara (WU1) formations, were imaged by X-ray computed tomography (CT) imaging, including 1 foot of partially preserved core. 14 plugs were extracted from these cores and imaged in 3D by a high resolution helical micro-CT. Analysis revealed stark differences in mineralogy, grain size and sorting and the presence of severe fracturing in some plugs due to the fragility and friability of the rock. Sub-plugs were extracted from 10 of the 14 plugs (including one sub-plug from the partially preserved section) and imaged in 3D by helical micro-CT. 7 of the sub-plugs proved suitable for digital RCA and SCAL analysis. The 3D images were used to calculate digital RCA properties (porosity, permeability, grain density, grain size distribution and formation factor) and pore network models were built to perform digital SCAL simulations and predict multiphase transport properties such as Pc, kr and resistivity index for primary drainage and imbibition. In addition, the in situ mineralogy of each plug was analysed using 2D SEM-EDS automated, quantified mineral mapping. The mineral maps, combined with BSEM images, contain rich textural information and were registered into perfect geometric alignment with the 3D micro-CT images. A tight rock workflow was used to identify sub-resolution porosity in 3 of the plugs. Experimental MICP curves showed that substantial portions of the pore throats were below the image resolution, caused by large amounts of pore-filling materials. Hence, pore scale information could not be directly extracted from some images. Consequently, process based modelling was carried out on two plugs to generate pore-networks. A quasi-static pore-network model was used to simulate oil/water displacements and predict multiphase transport properties. Detailed imaging of oil-in-place and porosity was performed on a partially preserved plug to create a map of remaining oil which revealed that oil was retained in most porous grains and strongly retained in clay-rich zones. The digital core analysis results are in agreement with available log and core data. The Lower Ahmadi (AHL2) section is good quality in terms of porosity, permeability and flow properties, whereas the Upper Wara (WU1) section is of poorer quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call