Abstract

The flow control range of the double-compound axial piston pump with the traditional mechanical-hydraulic feedback servo control is limited and the accuracy is poor. Accordingly, this paper proposes a digital control scheme and its control strategy using a linear stepper motor direct drive servo valve for the precise control and double pumps cooperation of the double-compound axial piston pump. A numerical model of the digital control double-compound axial piston pump is established, and the validity of the model is verified by experimental tests. The performance advantages of the digital control method relative to the mechanical-hydraulic feedback servo control method are analyzed, as is the performance of the control strategy for double pumps. The results show that the digital control method can achieve a wider range of flow control than the traditional mechanical-hydraulic feedback servo control method and avoid the torque impact on the prime mover caused by the active control. The combination of the flow control and the power control including four control modes can meet the performance requirements of the double-compound axial piston pump. The highest priority is given to the energy-saving control, which can reduce the displacement of the main pump in the nonworking state to reduce the additional power loss. The study provides a basis for the accurate matching and optimization of power to load and flow to operating speed of the double-compound axial piston pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call