Abstract

The higher-order interactions emerging in the network topology affect the effectiveness of digital contact tracing (DCT). In this paper, we propose a mathematical model in which we use the hypergraph to describe the gathering events. In our model, the role of DCT is modeled as individuals carrying the app. When the individuals in the hyperedge all carry the app, epidemics cannot spread through this hyperedge. We develop a generalized percolation theory to investigate the epidemic outbreak size and threshold. We find that DCT can effectively suppress the epidemic spreading, i.e., decreasing the outbreak size and enlarging the threshold. DCT limits the spread of the epidemic to larger cardinality of hyperedges. On real-world networks, the inhibitory effect of DCT on the spread of epidemics is evident when the spread of epidemics is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.