Abstract

This paper discusses digital compensation for frequency-dependent transfer characteristics and implementation errors in digital PAM/continuous-phase frequency-shift keying (CPFSK) quadrature modulators. Recently, several methods have been proposed to digitally compensate for the shortcomings of the analog reconstruction filters in IQ modulators. While these methods have shown to be effective, they result in filters with long coefficients that are computationally demanding to implement on the DSP. Furthermore, the modulator needs to be taken offline while the precompensation filters are updated to reflect the changes in the I and Q channel characteristics. In this paper, a digital compensation method is proposed here using two adaptive finite-impulse response filters to compensate for the magnitude and phase characteristics of the analog reconstruction filters in the IQ modulator. The experimental results show that this technique is effective and lead to substantial improvement of the output envelope ripples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.