Abstract

We report a 10-Gbaud fiber-optic cipher transmission system by using a phase-shift keying (PSK) Y-00 quantum stream cipher. The PSK Y-00 cipher is a symmetric-key direct data encryption technique based on extremely high-order random phase modulation using a pre-shared short key. Neighboring signal phases following encryption are masked by quantum (shot) noise, which provides security based on shot noise's inherent effects. To implement such a system, we utilize coarse-to-fine phase modulation with two cascaded phase modulators and digital decryption incorporated into digital signal processing (DSP) for intra-dyne coherent detection. We demonstrate 10-Gbaud PSK Y-00 cipher transmission over a 400-km standard single-mode fiber (SSMF). The coarse-to-fine phase modulation achieves 217 phase levels for signal masking by shot noise. The DSP with decryption realizes detection of the cipher without penalties. Masking 167 signal phase levels by shot noise is achieved at a bit-error ratio defined by a hard-decision forward-error correction threshold (3.8 × 10-3) in the transmissions over the 400-km SSMF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call