Abstract

Camera calibration has always been an essential component of photogrammetric measurement, with self-calibration nowadays being an integral and routinely applied operation within photogrammetric triangulation, especially in high-accuracy close-range measurement. With the very rapid growth in adoption of off-the-shelf digital cameras for a host of new 3D measurement applications, however, there are many situations where the geometry of the image network will not support robust recovery of camera parameters via on-the-job calibration. For this reason, stand-alone camera calibration has again emerged as an important issue in close-range photogrammetry, and it also remains a topic of research interest in computer vision. This paper overviews the current approaches adopted for camera calibration in close-range photogrammetry and computer vision, and discusses operational aspects for self-calibration. Also, the results of camera calibrations using different algorithms are summarized. Finally, the impact of chromatic aberration on modelled radial distortion is touched upon to highlight the fact that there are still issues of research interest in the photogrammetric calibration of consumer-grade digital cameras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call