Abstract

Conventional critical conduction mode (CRM) control for many boost-derived power factor correction (PFC) circuits forms triangular inductor current. For three-level boost (TLB) converter, the conventional method is unattractive because losses increase but waveform quality remains unchanged, compared to other topologies. In order to obtain higher efficiency and improved waveform qualities, this article focuses on the distinctive structure of TLB and its inherent degree-of-freedom (DOF) in current-slope shaping. Based on the DOF, a new CRM control for TLB PFC is proposed and analyzed. Detailed design and digital implementation method are also provided. Different from conventional methods, the proposed CRM control divides each switching cycle into three parts including common on-time of two switches, additional on-time of one switch and common off-time. Accordingly, TLB inductor current is synthesized in quadrangular forms. The analyses and experimental results confirm that switching frequency and peak input current of TLB can be reduced by the proposed control. Due to the reductions, efficiency, total harmonic distortion, and quality of input current are improved with practically unchanged power factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.