Abstract

Tertiary lymphoid structures (TLSs) are associated with favorable prognosis and enhanced response to anti-cancer therapy. A digital assessment of TLSs could provide an objective alternative that mitigates variability inherent in manual evaluation. This study aimed to develop and validate a digital gene panel based on biological prior knowledge for assessment of TLSs, and further investigate its associations with survival and multiple anti-cancer therapies. The present study involved 1,704 patients with gastric cancer from seven cancer centers. TLSs were identified morphologically through hematoxylin-and-eosin staining. We further developed a digital score based on targeted gene expression profiling to assess TLSs status, recorded as gene signature of tertiary lymphoid structures (gsTLS). For enhanced interpretability, we employed the SHapley Additive exPlanation (SHAP) analysis to elucidate its contribution to the prediction. We next evaluated the signature's associations with prognosis, and investigated its predictive accuracy for multiple anti-cancer therapies, including adjuvant chemotherapy and immunotherapy. The gsTLS panel with nine gene features achieved high accuracies in predicting TLSs status in the training, internal and external validation cohorts (area under the curve, range: 0.729-0.791). In multivariable analysis, gsTLS remained an independent predictor of disease-free and overall survival (hazard ratio, range: 0.346-0.743, all P < 0.05) after adjusting for other clinicopathological variables. SHAP analysis highlighted gsTLS as the strongest predictor of TLSs status compared with clinical features. Importantly, patients with high gsTLS (but not those with low gsTLS) exhibited substantial benefits from adjuvant chemotherapy (P < 0.05). Furthermore, we found that the objective response rate to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy was significantly higher in the high-gsTLS group (40.7%) versus the low-gsTLS group (5.6%, P = 0.036), and the diagnosis was independent from Epstein-Barr virus (EBV), tumor mutation burden (TMB), and programmed cell death-ligand 1 (PD-L1) expression. The gsTLS digital panel enables accurate assessment of TLSs status, and provides information regarding prognosis and responses to multiple therapies for gastric cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call