Abstract

A rotating machinery test rig was instrumented with fiber Fabry-Perot interferometer strain sensors for condition monitoring of rolling element bearings. Strain variations produced by ball passes were observed and analyzed in the time and frequency domain. Wavelength division multiplexing was utilized to simultaneously monitor the sensors with analog and digital readout systems--analog for high bandwidth and digital for high dynamic range and the monitoring of multiple sensors. The effects of imbalance on the shaft, changes in rotational speed, effects on the rotor system, and detection of bearing defects were investigated. Frequency peaks observed in the bearing sensor spectra closely matched predicted values. Imbalance and rotational speed tests showed good agreement with expected trends, and bearing defects were successfully detected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.