Abstract

Memristors with the outstanding advantages are beneficial for neuromorphic computing and next-generation storage. Realizing various resistive switching behaviors in monolayer memristors is essential for understanding the device physics and fabricating fully memristive devices. In this paper, a simple and feasible method was proposed to achieve the digital and analog resistive switching in Cu/AlOx/Ag memristors by using ozone and water precursors in atomic layer deposition. According to the characterization results of surface topography, Raman spectrum and electrical measurement, the transition between the abrupt and gradual resistive switching was ascribed to the migration and diffusion of active electrode metal ions in the sparser, rougher and more amorphous AlOx dielectric films. The key features of biological synapses including long-term potentiation/depression, paired-pulse facilitation and learning-experience behaviors were emulated in the analog monolayer memristors. This study makes an important step towards the development of the sophisticated, multi-functional, and large-scale integrated neuromorphic devices and systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call