Abstract

AbstractSearch-based methods are a popular approach for automatically repairing software bugs, a field known as automated program repair (APR). There is increasing interest in empirical evaluation and comparison of different APR methods, typically measured as the rate of successful repairs on benchmark sets of buggy programs. Such evaluations, however, fail to explain why some approaches succeed and others fail. Because these methods typically use syntactic representations, i.e., source code, we know little about how the different methods explore their semantic spaces, which is relevant for assessing repair quality and understanding search dynamics. We propose an automated method based on program semantics, which provides quantitative and qualitative information about different APR search-based techniques. Our approach requires no manual annotation and produces both mathematical and human-understandable insights. In an empirical evaluation of 4 APR tools and 34 defects, we investigate the relationship between search-space exploration, semantic diversity and repair success, examining both the overall picture and how the tools’ search unfolds. Our results suggest that population diversity alone is not sufficient for finding repairs, and that searching in the right place is more important than searching broadly, highlighting future directions for the research community.KeywordsSemantic search spacesProgram repairPatch diversity

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call