Abstract

The objective of this experiment was to quantify ruminal digestive processes that could help to identify factors limiting DMI when silages differing in grass maturity were fed to dairy cows. Four silages were harvested at 1-wk intervals from a primary growth of a timothy-meadow fescue sward, resulting in feeds with digestible OM content in DM (D-value) of 739, 730, 707, and 639 g/kg in the order of succeeding harvest date. Four ruminally cannulated dairy cows were given ad libitum access to these silages supplemented with 7 kg concentrate per day in a 4 x 4 Latin square design. Rumen function was clearly affected by decreasing digestibility of silage fed. Passage rate of digestible NDF (DNDF) and indigestible NDF (INDF) increased, but it could not prevent the accumulation of DM, NDF, DNDF, and INDF into the rumen when silages of progressing grass maturity were fed. The greatest proportional increases in rumen pool were found in INDF and in medium particles (separated by wet sieving and measuring 315 to 2,500 microm). The passage of medium INDF particles decreased (P < 0.01) linearly (from 0.0365/h to 0.0281/h) with increasing maturity of grass ensiled, and it was slower than passage of small (80 to 315 microm) particles (on average 0.0524/h). Particle size reduction of large INDF particles to medium INDF particles was slower (P < 0.001) in the early cut silages (0.0216/h to 0.0484/h) but reduction of medium INDF particles to small INDF particles was faster (P < 0.001) in early cut silages (0.0436 to 0.0305). Passage of medium size particles and(or) rate of medium particle breakdown to small particles were potential intake-constraining properties of low digestibility forages, whereas large particle reduction to medium particles seemed not to be limiting. The increased feed intake of the early-cut silages was accompanied by decreased rumen fill, suggesting that rumen fill was not at least solely responsible for feed intake control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.