Abstract

The ontogenesis of digestive enzymes (proteases, amylases, lipases, and phosphatases) in Cuban gar Atractosteus tristoechus was determined in larvae between 5 and 18 days after hatching (DAH). Variations in specific activities of most enzymes were related to the transition from endogenous to exogenous feeding and to the transition from the larval to the juvenile stage. Alkaline protease activity was not detected until 8 DAH in contrast to acid protease activity, which was quantifiable at 5 DAH. Acid protease activity was consistently higher than alkaline protease activity, indicating the presence of a functional stomach in the early stages of larval development. The acid protease activities of larvae and adults were compared by means of zymogram analysis. Four acid protease bands were found in adults (two more than in larvae). This result is the first time that more than one band of acid proteolytic activity has been found in Lepisosteidae. High lipase activity indicated the importance of lipid utilization, particularly during yolk-sac absorption. In contrast to the other enzymes studied, amylase activity was consistently low, probably due to the strictly carnivorous diet of gar larvae and their low capacity for carbohydrate digestion. High activities of aminopeptidase and acid and alkaline phosphatases suggest intestinal absorption. This result, together with the existence of a short gut and a lower proteolytic activity in the intestine than in the stomach, suggest that most of the proteolytic activity takes place in the stomach, while the primary function of the intestine is nutrient uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call