Abstract

Genetic variation in growth performance was estimated in 26 families from two commercial strains of Arctic charr Salvelinus alpinus. Physiological determinants of growth and metabolic capacities were also assessed through enzymatic assays. A relatedness coefficient was attributed to each family using parental genotypes at seven microsatellite loci. After 15 months of growth, faster growing families had significantly lower relatedness coefficients than slower growing families, suggesting their value as indicators of growth potential. Individual fish that exhibited higher trypsin activity also displayed higher growth rate, suggesting that superior protein digestion capacities can be highly advantageous at early stages. Capacities to use amino acids as expressed by glutamate dehydrogenase (GDH) activities were lower in the liver of fast-growing fish (13-20%), whereas white muscle of fast-growing fish showed higher activities than that of slow-growing fish for amino acid metabolism and aerobic capacity [22-32% increase for citrate synthase (CS), aspartate aminotransferase (AAT) and GDH]. The generally higher glycolytic capacities (PK and LDH) in white muscle of fast-growing fish indicated higher burst swimming capacities and hence better access to food.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.