Abstract

Full-scale aerobic granular sludge technology under the trade name Nereda® has been implemented for municipal, as well as industrial wastewater treatment. Owing to the operational reactor procedures, two types of waste aerobic granular sludge can be clearly distinguished: 1) aerobic granular sludge selection discharge (AGS-SD) and 2) aerobic granular sludge mixture (AGS-RTC). This study systematically compared the anaerobic biodegradability of AGS-SD and AGS-RTC under mesophilic conditions. Results were further compared with the anaerobic conversion of waste activated sludge (WAS) as well as primary sludge (PS) from full-scale municipal wastewater treatment plants. Analysis showed similar chemical characteristics for AGS-SD and PS, which were both characterized by a high carbohydrate content (429 ± 21 and 464 ± 15 mg glucose/g VS sludge, respectively), mainly cellulosic fibres. Concurrently, AGS-RTC exhibited chemical properties close to WAS, both characterized by a relatively high protein content, which were individually 498 ± 14 and 389 ± 15 mg/g VS sludge. AGS-SD was characterized by a high biochemical methane potential (BMP) (296 ± 15 mL CH4/g VS substrate), which was similar to that of PS, and remarkably higher than that of AGS-RTC and WAS. Strikingly, the BMP of AGS-RTC (194 ± 10 mL CH4/g VS substrate) was significantly lower than that of WAS (232 ± 11 mL CH4/g VS substrate). Mechanically destroying the compact structure of AGS-RTC only accelerated the methane production rate but did not significantly affect the BMP value. Results indicated that compared to WAS, the proteins and carbohydrates in AGS-RTC were both more resistant to anaerobic bio-degradation, which might be related to the presence of refractory microbial metabolic products in AGS-RTC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.