Abstract

This study was conducted to examine digestibility of insect meals for Pacific white shrimp (Litopenaeus vannamei) and their utilization as fish meal substitutes. The tested insect meals were mealworm, silkworm, black soldier fly, rice grasshopper, two-spotted cricket, dynastid beetle and white-spotted flower chafer. Apparent digestibility coefficients of the tested insect meals were 83-89% for protein, 91-98% for lipid, 84-90% for energy, 77-81% for dry matter, 28-36% for chitin, 76-96% for amino acids and 89-93% for fatty acids. The amino acid availability of insect meals was high in taurine (93-96%), arginine (91-95%) and lysine (90-95%). Availability of fatty acids were 89-93% for saturated fatty acids, 90-93% for monounsaturated fatty acids and 88-93% for polyunsaturated fatty acids. For a feeding trial, a control diet was formulated using 27% tuna byproduct meal as a fish meal source and seven other diets were prepared replacing 10% tuna byproduct meal in the control diet with each insect meal. Triplicate groups of shrimp (initial body weight: 0.17 g) were fed the diets for 65 days. The growth performance was significantly improved when the shrimp were fed black soldier fly or dynastid beetle included diet. Dietary supplementation of insect meals significantly improved non-specific immune responses and antioxidant enzyme activity in the shrimp. These results indicate that the tested insect meals have high potentials to be used as a protein source that could replace fish meal in diets for the shrimp.

Highlights

  • Insect meals have recently become an attractive alternative protein source for the production of sustainable aquaculture feeds [1]

  • The seven insect meals tested in this study were dynastid beetle (DB)

  • Our findings indicated that insect meals can be used as highly digestible protein sources in shrimp feed

Read more

Summary

Introduction

Insect meals have recently become an attractive alternative protein source for the production of sustainable aquaculture feeds [1]. In addition to their high protein levels, insects rich in lipids, minerals and vitamins that support growth of shrimp and fish [2]. Insect larvae can rapidly convert low-quality organic wastes into high-quality fertilizer or growth promoters in animal feeds [3] and several species of insects have been found to possess antifungal and antibacterial properties [4]. The protein content of insects ranges from 50% to 82% Digestibility of insect meals for shrimp (2019R1A6A1A03033553 and NRF2018RID1A3B07046053). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call