7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.jss.2022.111300
Copy DOIJournal: Journal of Systems and Software | Publication Date: Mar 14, 2022 |
Citations: 4 | License type: other-oa |
Bug localization is a recurrent maintenance task in software development. It aims at identifying relevant code locations (e.g., code files) that must be inspected to fix bugs. When such bugs are reported by users, the localization process become often overwhelming as it is mostly a manual task due to incomplete and informal information (written in natural languages) available in bug reports. The research community has then invested in automated approaches, notably using Information Retrieval techniques. Unfortunately, reported performance in the literature is still limited for practical usage. Our key observation, after empirically investigating a large dataset of bug reports as well as workflow and results of state-of-the-art approaches, is that most approaches attempt localization for every bug report without considering the different characteristics of the bug reports. We propose DigBug as a straightforward approach to specialized bug localization. This approach selects pre/post-processing operators based on the attributes of bug reports; and the bug localization model is parameterized in accordance as well. Our experiments confirm that departing from “one-size-fits-all” approaches, DigBug outperforms the state-of-the-art techniques by 6 and 14 percentage points, respectively in terms of MAP and MRR on average.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.