Abstract
Digalloylresveratrol (DIG) is a recently synthesized substance aimed to combine the effects of the natural polyphenolic compounds gallic acid and resveratrol, which both are excellent free radical scavengers with anticancer activity. In this study, we investigated the effects of DIG in the human AsPC-1 and BxPC-3 pancreatic adenocarcinoma cell lines. Treatment with DIG dose-dependently attenuated cells in the S phase of the cell cycle and led to a significant depletion of the dATP pool in AsPC-1 cells. The incorporation of (14)C-cytidine into nascent DNA of tumor cells was significantly inhibited at all DIG concentrations due to inhibition of ribonucleotide reductase, a key enzyme of DNA synthesis in tumor cells. Furthermore, Erk1/2 became inactivated and moderated p38 phosphorylation reflecting increased replication stress. DIG also activated ATM and Chk2, and induced the phosphorylation and proteasomal degradation of the proto-oncogene Cdc25A, which contributed to cell cycle attenuation. Taken together, DIG is an excellent free radical scavenger, strongly inhibits RR in situ activity, cell cycle progression, and colony formation in AsPC-1 and BxPC-3 cells thus warranting further investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.