Abstract
Bimetallic Fe/Cu nanoparticles were successfully stabilized by chitosan used for remediating hexavatlent chromium contaminated wasterwater. However, the over-loaded chitosan on the surface of Fe/Cu particles limited the Cr(VI) reduction due to the occupation of the surface reactive sites. Weighing the colloid stability and the reduction reactivity, the optimal dosage of chitosan is 2.0 wt% and the optimal Cu doping dosage is 3.0 wt%. SEM and TEM images showed that the chitosan-stabilized Fe/Cu bimetallic nanoparticles (CS-Fe/Cu nanoparticles) were uniformly dispersed, which had loose and porous surface. FTIR characterization showed that the binding sites of nZVI and chitosan. XRD demonstrated that the presence of copper and chitosan did not change the existence form of zero-valent iron. Most importantly, the contribution of chitosan and Cu in the removal mechanism was studied by the reduction experiments and the XPS analysis. On the one hand, chitosan could effectively combine with Cr(VI) due to chelation, on the other hand, Cu played an important role in the precipitation and coprecipitation phenomena. These findings indicate that CS-Fe/Cu has the potential to be a promising material for wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.