Abstract

Lithium metal is an attractive and promising anode material due to its high energy density and low working potential. However, the uncontrolled growth of lithium dendrites during repeated plating and stripping processes hinders the practical application of lithium metal batteries, leading to low Coulombic efficiency, poor lifespan, and safety concerns. In this study, we synthesized highly lithiophilic and conductive Ag nanoparticles decorated on SiO2 nanospheres to construct an optimized lithium host for promoting uniform Li deposition. The Ag nanoparticles not only act as lithiophilic sites but also provide high electrical conductivity to the Ag@SiO2@Ag anode. Additionally, the SiO2 layer serves as a lithiophilic nucleation agent, ensuring homogeneous lithium deposition and suppressing the growth of lithium dendrites. Theoretical calculations further confirm that the combination of Ag nanoparticles and SiO2 effectively enhances the adsorption ability of Ag@SiO2@Ag with Li+ ions compared to pure Ag and SiO2 materials. As a result, the Ag@SiO2@Ag coating, with its balanced lithiophilicity and conductivity, demonstrates excellent electrochemical performance, including high Coulombic efficiency, low polarization voltage, and long cycle life. In a full lithium metal cell with LiFePO4 cathode, the Ag@SiO2@Ag anode exhibits a high capacity of 133.1 and 121.4 mAh/g after 200 cycles at rates of 0.5 and 1C, respectively. These results highlight the synergistic coupling of lithiophilicity and conductivity in the Ag@SiO2@Ag coating, providing valuable insights into the field of lithiophilic chemistry and its potential for achieving high-performance batteries in the next generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.