Abstract

3D turbo field echo with diffusion-sensitised driven-equilibrium preparation (DSDE-TFE) is a novel non-echo planar technique for diffusion-weighted (DW) imaging. The purpose of this study was to differentiate intraorbital lymphoma from immunoglobulin G4-related disease (IgG4-RD) using the apparent diffusion coefficient (ADC) derived from DSDE-TFE. Fifteen patients with lymphomas and 8 with IgG4-RDs underwent imaging. ADC and signal intensities compared with normal grey matter on T1-weighted images, fat-suppressed T2-weighted images and fat-suppressed postcontrast T1-weighted images were measured. Statistical analyses were performed using the Mann-Whitney U test and receiver operating characteristic (ROC) analysis. Intraorbital lesions were clearly visualised on DSDE-TFE without obvious geometrical distortion. The ADC of lymphoma (1.25 ± 0.50 × 10(-3)mm(2)/s; mean ± standard deviation) was significantly lower than that of IgG4-RD (1.67 ± 0.84 × 10(-3)mm(2)/s; P < 0.05). Conventional sequences could not separate lymphoma from IgG4-RD (0.93 ± 0.18 vs. 0.94 ± 0.21 on T1-weighted images, 0.92 ± 0.17 vs. 0.95 ± 0.14 on T2-weighted images and 2.03 ± 0.35 vs. 2.30 ± 0.58 on postcontrast T1-weighted images, for lymphoma and IgG4-RD, respectively; P > 0.05). ROC analysis showed the best diagnostic performance with ADC. The apparent diffusion coefficient derived from diffusion-sensitised driven-equilibrium preparation techniques may help to differentiate lymphoma from immunoglobulin G4-related disease. • Distinguishing between orbital lymphoma and immunoglobulin G4-related disease can be difficult • Intraorbital lesions were clearly visualised on diffusion-sensitised driven-equilibrium preparation magnetic resonance techniques. • Variations in field homogeneity do not affect DSDE-TFE techniques all that much. • ADCs derived from DSDE-TFE may help differentiate lymphoma from IgG4-RD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.