Abstract

ABSTRACTThe nature of diffusivity and porosity in crystalline rock was studied by electrical conductivity measurements, steady-state diffusion experiments, saturation-leaching of tracers with cylindrical rock samples and analysis of the concentrations of different elements from core samples or pore water near fractures. The phenomena of main interest were dead-end porosity, ion-exclusion, sorption, and the continuity of pore networks. The modelling of experimental results was based on a modified Fick's second law for diffusion, which was solved either by analytical or numerical methods. The measured De and ε were found to statistically follow an exponential presentation: Archie's law. The existence of ion-exclusion for anions was confirmed. The connectivity of the pore network extended in the laboratory experiments at least six centimetres, in coarse-grained granite in nature several metres but in fine-grained rock samples of a uranium deposit the element mobilization effects could be seen only to the depth of 2–3 centimetres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call