Abstract

The role of disorder in controlling diffusivity and mobility of charge-carriers in the hopping regime of transport within a potential landscape has become especially significant for organic semiconductors. The temperature and field dependence of diffusivity (D) and mobility (μ) of injected charge-carriers have been simultaneously measured using electroluminescence transients for representative organic thin-films of tris(8-hydroxyquinoline) aluminum (III) (Alq3) and poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO). Significantly, the field dependence of diffusivity at different temperatures is similar except for a shift of a critical field beyond which it shows a sharp increase. The critical field is shown to be linearly decreasing with temperature ultimately vanishing at a characteristic limit T∗, and the slope is a measure of the localization length. The normalization of diffusivity is used to demonstrate the role of field in controlling temperature dependence. The scheme has been used to neatly decouple contributions from energetic (diagonal) and positional (off-diagonal) disorder thus enabling independent experimental determination of all the parameters of standard and correlated versions of Gaussian disorder model. The results demonstrate the validity of Gaussian disorder model even for non-equilibrium carriers, and that the parameters can be obtained with appropriate scaling of the field in such cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call