Abstract
The interaction of a pair of weakly coupled biological bursters is examined. Bursting refers to oscillations in which an observable slowly alternates between phases of relative quiescence and rapid oscillatory behavior. The motivation for this work is to understand the role of electrical coupling in promoting the synchronization of bursting electrical activity (BEA) observed in the β-cells of the islet of Langerhans, which secrete insulin in response to glucose. By studying the coupled fast subsystem of a model of BEA, we focus on the interaction that occurs during the rapid oscillatory phase. Coupling is weak, diffusive and non-scalar. In addition, non-identical oscillators are permitted. Using perturbation methods with the assumption that the uncoupled oscillators are near a Hopf bifurcation, a reduced system of equations is obtained. A detailed bifurcation study of this reduced system reveals a variety of patterns but suggests that asymmetrically phase-locked solutions are the most typical. Finally, the results are applied to the unreduced full bursting system and used to predict the burst pattern for a pair of cells with a given coupling strength and degree of heterogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.