Abstract

The magnetic field line structure of tokamaks with reversed magnetic shear is analyzed by means of a nontwist map model that takes into account non-integrable perturbations that describe ergodic magnetic limiters. The map studied possess behavior expected of the standard nontwist map, a well-studied map, despite the different symmetries and the existence of coupled perturbations. A distinguising feature of nontwist maps is the presence of good surfaces in the reveresed shear region, and consequently the appearance of a transport barrier inside the plasma. Such barriers are observed in the present model and are seen to be very robust. Very strong perturbations are required to destroy them, and even after breaking, the transport turns out to be diffusive. Poloidal diffusion is found to be two orders of magnitude higher than radial diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call