Abstract

We calculate the diffusion coefficients of persistent random walks on cubic and hypercubic lattices, where the direction of a walker at a given step depends on the memory of one or two previous steps. These results are then applied to study a billiard model, namely a three-dimensional periodic Lorentz gas. The geometry of the model is studied in order to find the regimes in which it exhibits normal diffusion. In this regime, we calculate numerically the transition probabilities between cells to compare the persistent random-walk approximation with simulation results for the diffusion coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.