Abstract

The diffusive dynamics of dilute dispersions of nanoparticles of diameter 200-400 nm were studied in microfabricated arrays of nanoposts using differential dynamic microscopy and single particle tracking. Posts of diameter 500 nm and height 10 μm were spaced by 1.2-10 μm on a square lattice. As the spacing between posts was decreased, the dynamics of the nanoparticles slowed. Moreover, the dynamics at all length scales were best represented by a stretched exponential rather than a simple exponential. Both the relative diffusivity and the stretching exponent decreased linearly with increased confinement and, equivalently, with decreased void volume. The slowing of the overall diffusive dynamics and the broadening distribution of nanoparticle displacements with increased confinement are consistent with the onset of dynamic heterogeneity and the approach to vitrification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.