Abstract
We study the diffusive dynamics of phase separation in a symmetric binary (A + B) mixture with a 50:50 composition of A and B particles, following a quench below the demixing critical temperature, both in spatial dimensions d=2 and d=3. The particular focus of this work is to obtain information about the effects of system size and correction to the growth law via the appropriate application of the finite-size scaling method to the results obtained from the Kawasaki exchange Monte Carlo simulation of the Ising model. Observations of only weak size effects and a very small correction to scaling in the growth law are significant. The methods used in this work and information thus gathered will be useful in the study of the kinetics of phase separation in fluids and other problems of growing length scale. We also provide a detailed discussion of the standard methods of understanding simulation results which may lead to inappropriate conclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.