Abstract

We study a countable system of interacting diffusions on the interval [0,1], indexed by a hierarchical group. A particular choice of the interaction guaranties, we are in the diffusive clustering regime. This means clusters of components with values either close to 0 or close to 1 grow on various different scales. However, single components oscillate infinitely often between values close to 0 and close to 1 in such a way that they spend fraction one of their time together and close to the boundary. The processes in the whole class considered and starting with a shift-ergodic initial law have the same qualitative properties (universality).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.