Abstract

Diffusiophoresis is the spontaneous movement of colloidal particles in a concentration gradient of solutes. As a small-scale phenomenon that harnesses energy from concentration gradients, diffusiophoresis may prove useful for passively manipulating particles in lab-on-a-chip applications as well as configurations involving interfaces. Though naturally occurring ions are often multivalent, experimental studies of diffusiophoresis have been mostly limited to monovalent electrolytes. In this work, we investigate the motion of negatively charged polystyrene particles in one-dimensional salt gradients for a variety of multivalent electrolytes. We develop a one-dimensional model and obtain good agreement between our experimental and modeling results with no fitting parameters. Our results indicate that the ambipolar diffusivity, which is dependent on the valence combination of cations and anions, dictates the speed of the diffusiophoretic motion of the particles by controlling the time scale at which the electrolyte concentration evolves. In addition, the ion valences also modify the electrophoretic and chemiphoretic contributions to the diffusiophoretic mobility of the particles. Our results are applicable to systems where the chemical concentration gradient is comprised of multivalent ions, and motivate future research to manipulate particles by exploiting ion valence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.