Abstract

To evaluate diffusion-weighted magnetic resonance (MR) imaging for monitoring tumor response in rats after administration of combretastatin A4 phosphate. Study protocol was approved by local ethical committee for animal care and use. Rhabdomyosarcomas implanted subcutaneously in both flanks of 17 rats were evaluated with 1.5-T MR unit by using four-channel wrist coil. Transverse T2-weighted fast spin-echo sequences, T1-weighted spin-echo sequences before and after gadodiamide administration, and transverse echo-planar diffusion-weighted MR examinations were performed before, 1 and 6 hours, and 2 and 9 days after intraperitoneal injection of vascular targeting agent (combretastatin A4 phosphate, 25 mg/kg). Apparent diffusion coefficient (ADC) was automatically calculated from diffusion-weighted MR imaging findings. These findings were compared with histopathologic results at each time point. For statistical analysis, paired Student t tests with Bonferroni correction for multiple testing were used. T1-weighted images before combretastatin administration showed enhancement of solid tumor tissue but not of central necrosis. At 1 and 6 hours after combretastatin injection, enhancement of solid tissue disappeared almost completely, with exception of small peripheral rim. At 2 and 9 days after combretastatin injection, enhancement progressively reappeared in tumor periphery. ADC, however, showed decrease early after combretastatin injection ([1.26 +/- 0.16]x 10(-3) mm2/sec before, [1.18 +/- 0.17]x 10(-3) mm2/sec 1 hour after [P=.0005] and [1.08 +/- 0.14]x 10(-3) mm(2)/sec 6 hours after [P=.0007] combretastatin A4 phosphate injection), histologically corresponding to vessel congestion and vascular shutdown in periphery but no necrosis. An increase of ADC ([1.79 +/- 0.13]x 10(-3) mm2/sec) (P <.0001) 2 days after combretastatin A4 phosphate injection was paralleled by progressive histologic necrosis. A significant (P <.0001) decrease in ADC 9 days after treatment ([1.41 +/- 0.15]x 10(-3) mm2/sec) corresponded to tumor regrowth. In addition to basic relaxation-weighted MR imaging and postgadolinium T1-weighted MR imaging to enable prompt detection of vascular shutdown, diffusion-weighted MR imaging was used to discriminate between nonperfused but viable and necrotic tumor tissues for early monitoring of therapeutic effects of vascular targeting agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.