Abstract

IntroductionThe aim of this study was to examine whether the patterns of diffusion-weighted imaging (DWI) abnormalities and quantitative regional apparent diffusion coefficient (ADC) values can predict the clinical outcome of comatose patients following cardiac arrest.MethodsThirty-nine patients resuscitated from out-of-hospital cardiac arrest were prospectively investigated. Within five days of resuscitation, axial DWIs were obtained and ADC maps were generated using two 1.5-T magnetic resonance scanners. The neurological outcomes of the patients were assessed using the Glasgow Outcome Scale (GOS) score at three months after the cardiac arrest. The brain injuries were categorised into four patterns: normal, isolated cortical injury, isolated deep grey nuclei injury, and mixed injuries (cortex and deep grey nuclei). Twenty-three subjects with normal DWIs served as controls. The ADC and percent ADC values (the ADC percentage as compared to the control data from the corresponding region) were obtained in various regions of the brains. We analysed the differences between the favourable (GOS score 4 to 5) and unfavourable (GOS score 1 to 3) groups with regard to clinical data, the DWI abnormalities, and the ADC and percent ADC values.ResultsThe restricted diffusion abnormalities in the cerebral cortex, caudate nucleus, putamen and thalamus were significantly different between the favourable (n = 13) and unfavourable (n = 26) outcome groups. The cortical pattern of injury was seen in one patient (3%), the deep grey nuclei pattern in three patients (8%), the cortex and deep grey nuclei pattern in 21 patients (54%), and normal DWI findings in 14 patients (36%). The cortex and deep grey nuclei pattern was significantly associated with the unfavourable outcome (20 patients with unfavourable vs. 1 patient with favourable outcomes, P < 0.001). In the 22 patients with quantitative ADC analyses, severely reduced ADCs were noted in the unfavourable outcome group. The optimal cutoffs for the mean ADC and the percent ADC values determined by receiver operating characteristic (ROC) curve analysis in the cortex, caudate nucleus, putamen, and thalamus predicted the unfavourable outcome with sensitivities of 67 to 93% and a specificity of 100%.ConclusionsThe patterns of brain injury in early diffusion-weighted imaging (DWI) (less than or equal to five days after resuscitation) and the quantitative measurement of regional ADC may be useful for predicting the clinical outcome of comatose patients after cardiac arrest.

Highlights

  • The aim of this study was to examine whether the patterns of diffusion-weighted imaging (DWI) abnormalities and quantitative regional apparent diffusion coefficient (ADC) values can predict the clinical outcome of comatose patients following cardiac arrest

  • The results of this study suggest that the pattern of brain injury on early DWI (≤ five days after resuscitation) and quantitative measurements of regional ADC may help predict the clinical outcome of comatose patients after cardiac arrest

  • Our study has revealed that the mixed pattern of brain injury on DWI performed within five days after cardiac arrest is well-correlated with an unfavourable outcome

Read more

Summary

Introduction

The aim of this study was to examine whether the patterns of diffusion-weighted imaging (DWI) abnormalities and quantitative regional apparent diffusion coefficient (ADC) values can predict the clinical outcome of comatose patients following cardiac arrest. Despite improvements in early prognostic evaluation, there are still some limitations and defects to solve, such as clinical examination and electroencephalogram being difficult to apply under sedative treatment [3], SSEPs having a moderate sensitivity in spite of 100% specificity for the prediction of persistent coma [4], and biochemical markers being susceptible to false positive results [5]. Neuroimaging, such as computed tomography (CT) scans or magnetic resonance imaging (MRI), is useful in assessing the extent of structural brain injury. Two studies reported quantitative ADC analyses of the whole brain or regional brain as a significant prognostic tool for predicting poor outcome in comatose survivors after cardiac arrest [20,21]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call