Abstract

Preoperative assessment of whether a successful primary debulking surgery (PDS) can be performed in patients with advanced high-grade serous ovarian carcinoma (HGSOC) remains a challenge. A reliable model to precisely predict resectability is highly demanded. To investigate the value of diffusion-weighted MRI (DW-MRI) combined with morphological characteristics to predict the PDS outcome in advanced HGSOC patients. Prospective. A total of 95 consecutive patients with histopathologically confirmed advanced HGSOC (ranged from 39 to 77 years). A 3.0 T, readout-segmented echo-planar DWI. The MRI morphological characteristics of the primary ovarian tumor, a peritoneal carcinomatosis index (PCI) derived from DWI (DWI-PCI) and histogram analysis of the primary ovarian tumor and the largest peritoneal carcinomatosis were assessed by three radiologists. Three different models were developed to predict the resectability, including a clinicoradiologic model combing MRI morphological characteristic with ascites and CA125 level; DWI-PCI alone; and a fusion model combining the clinical-morphological information and DWI-PCI. Multivariate logistic regression analyses, receiver operating characteristic (ROC) curve, net reclassification index (NRI) and integrated discrimination improvement (IDI) were used. A P < 0.05 was considered to be statistically significant. Sixty-seven cases appeared as a definite mass, whereas 28 cases as an infiltrative mass. The morphological characteristics and DWI-PCI were independent factors for predicting the resectability, with an AUC of 0.724 and 0.824, respectively. The multivariable predictive model consisted of morphological characteristics, CA-125, and the amount of ascites, with an incremental AUC of 0.818. Combining the application of a clinicoradiologic model and DWI-PCI showed significantly higher AUC of 0.863 than the ones of each of them implemented alone, with a positive NRI and IDI. The combination of two clinical factors, MRI morphological characteristics and DWI-PCI provide a reliable and valuable paradigm for the noninvasive prediction of the outcome of PDS. 2 TECHNICAL EFFICACY: Stage 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call